Annotation#
Overview#
To annotate the trajectory for code-agent, we need apply expert-level annotation.
We have two types of tasks:
(ongoing) Software Engineering -> we choose SWEGym as training set.
Terminal Task -> we are working on problem collection.
Build SWEGym tasks#
This script transfers the original swegym huggingface-dataset instance into agent-readable task format.
The generated tasks will be created under external/swegym/tasks.
### build specific tasks
python tools/swegym/build_swe_tasks.py -t $TASK_ID
### build dataset in target interval
python tools/swegym/build_swe_tasks.py -s $START_IDX -e $END_IDX
### build whole dataset
python tools/swegym/build_swe_tasks.py
START_IDX and END_IDX indicate the huggingface dataset range.
Warning: don’t annotate the problem with prefix project-monai__monai, since their docker size is too large.
Quickstart for annotation#
# Terminal-bench task example
autopilot evaluate --benchmark terminal_bench --task hello-world --terminal --interaction interactive
# SWE-bench task example
autopilot evaluate --benchmark swe_bench --task requests-863 --terminal --interaction interactive
# SWE-Gym task example
autopilot evaluate --benchmark swegym --task pandas-dev__pandas-47504 --terminal --interaction interactive
Annotation Principle#
First look at https://github.com/terminal-agent/AnnotationGuidelines for get the annotation principle.
If you have any other question, contact cunxiao and longxu.